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ABSTRACT

The fast Hankel transform (FHT) implemented with digital
filters has been the algorithm of choice in EM geophysics
for a few decades. However, other disciplines have predomi-
nantly relied on methods that break up the Hankel transform
integral into a sum of partial integrals that are each evaluated
with quadrature. The convergence of the partial sums is then
accelerated through a nonlinear sequence transformation. While
such a method was proposed for geophysics nearly three dec-
ades ago, it was demonstrated to be much slower than the FHT.
This work revisits this problem by presenting a new algorithm
named quadrature-with-extrapolation (QWE). The QWE meth-
od recasts the quadrature sum into a form conceptually similar

to the FHTapproach by using a fixed-point quadrature rule. The
sum of partial integrals is efficiently accelerated using the
Shanks transformation computed with Wynn’s ϵ algorithm. A
Matlab implementation of the QWE algorithm is compared with
the FHT method for accuracy and speed on a suite of relevant
modeling problems including frequency-domain controlled-
source EM, time-domain EM, and a large-loop magnetic source
problem. Surprisingly, the QWE method is faster than the FHT
for all three problems. However, when the integral needs to be
evaluated at many offsets and the lagged convolution variant of
the FHT is applicable, the FHT is significantly faster than the
QWEmethod. For divergent integrals such as those encountered
in the large loop problem, the QWE method can provide an
accurate answer when the FHT method fails.

INTRODUCTION

Electromagnetic (EM) modeling often relies on evaluating inte-
grals of the form

FðrÞ ¼
Z

∞

0
fðkÞgðkrÞdk; (1)

where gðkrÞ is an oscillatory Bessel function or sinusoid. The term
fðkÞ is the kernel function that depends on the subsurface physical
properties and may also be oscillatory. Due to the oscillatory beha-
vior of gðkrÞ, standard quadrature methods applied to these inte-
grals can be slow to converge or may fail if the integral is
divergent. Consequently, special care is required for their numerical
evaluation.
The ubiquity of these integrals in EM geophysics motivates the

need for accurate and efficient numerical integration techniques.
Consider the Hankel transform integral:

FðrÞ ¼
Z

∞

0
fðλÞJiðλrÞdλ; (2)

where Ji is an ith order Bessel function of the first kind that arises from
the cylindrical symmetry of the problem. This integral may need to be
evaluated millions of times or more for 3D modeling applications,
where 1D solutions are used to generate the source terms required
by scattered-field formulations (e.g., Newman and Alumbaugh,
1995), or are used for the Green’s tensors required by integral equation
methods (e.g., Raiche, 1999). Numerous evaluations are also necessary
for 1D inversions. For example, Bayesian inversion typically requires
10,000–100,000 or more forward computations (e.g., Chen et al.,
2007). The sine and cosine transforms used by 2.5D EM algorithms
(e.g., Li and Key, 2007) and time-domain EM (e.g., Newman et al.,
1986) are other examples of heavily used oscillatory integrals.
Most EM geophysics modeling codes in use today evaluate these

integrals by using the digital filter method that was proposed by
Ghosh (1971). Briefly, the digital filter method can be found by
substituting r ¼ ex and λ ¼ e−y into equation 2, giving
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exFðexÞ ¼
Z

∞

−∞
fðe−yÞJiðex−yÞex−ydy; (3)

which is then recast in the form of the convolution integral

IðxÞ ¼
Z

∞

−∞
fðyÞhðx − yÞdy ¼

Z
∞

−∞
fðx − yÞhðyÞdy: (4)

The discrete approximation to the convolution is

IðjÞ ¼
X∞

i¼−∞
fðj − iÞhðiÞ; (5)

where i and j are indices. Ghosh (1971) recognized that h is essen-
tially a vector of linear filter coefficients that could be predeter-
mined and subsequently applied to arbitrary kernel functions f.
Optimal filter coefficients for finite length filters can be found
by solving equation 5 for a length n filter using known integral
transform pairs for I and f, where the transform pairs are selected
to have rapid decay characteristics that are similar to the kernels of
interest (e.g., Anderson, 1979). The resulting n-point digital filter
approximation to equation 3 is

rFðrÞ ≈
Xn

i¼1

fðbi∕rÞhi; (6)

where the logarithmically spaced filter abscissae are

bi ¼ λir ¼ eai; i ¼ −l;−lþ 1; : : : ; l; (7)

l ¼ ðn − 1Þ∕2, and a is the spacing coefficient. The kernel function
f tends to be numerically expensive but only needs to be evaluated
at the n filter abscissae. Because common filter lengths are tens to
hundreds of points, the digital filter method is usually much faster
than simple direct quadrature and therefore has been referred to as
the fast Hankel transform (FHT) (Anderson, 1979; Johansen and
Sorensen, 1979). The simplicity and speed of the FHT, as well
as the availability of published algorithms (e.g., Anderson, 1979,
1989) have led to its widespread use in EM geophysics.
Despite these advantages, the FHT has received little attention

outside of geophysics. Instead, the engineering and applied math
disciplines have largely relied on direct methods that break up
the integral into an infinite sum of partial integrals which are each
evaluated using quadrature. The sum of partial integrals is then
accelerated or extrapolated to convergence through a suitable non-
linear sequence transformation. See Lucas and Stone (1995) and
Michalski (1998) for reviews of the various techniques available,
which collectively can be referred to as integration, summation,
and extrapolation (ISE) methods. Such numerical techniques date
back at least to Longman (1956), who broke up the integral between
the zeros of the Bessel function so that the sum of partial integrals
forms a slowly converging alternating series, which was then accel-
erated through the use of Euler’s transformation. Chave (1983)
implemented a similar method for geophysical applications, where
each partial integral is evaluated with adaptive quadrature
(Patterson, 1968) and the sum of partial integrals is accelerated
using a continued fraction expansion based on the method of
Hänggi et al. (1978).

A significant benefit of ISE methods is that they can be computed
iteratively until a specific error tolerance is obtained, where the error
is estimated by differencing the results from successive iterations of
the transformation. Conversely, the FHT does not have any intrinsic
mechanism for estimating the error in the approximation to the
integral. Additionally, ISE approaches can often handle divergent
integrals that would otherwise cause the direct quadrature summa-
tion and FHT methods to fail.
Despite the error control advantages of the ISE approach, a sub-

sequent GEOPHYSICS Discussion carried out between Chave and An-
derson indicated that the FHT can obtain highly accurate results
and, furthermore, is significantly faster than Chave’s adaptive quad-
rature approach (Anderson, 1984; Chave, 1984). Consequently, the
FHT method has dominated EM geophysics software, with little
consideration given to alternative approaches in the ensuing dec-
ades. Anderson eventually released a hybrid algorithm that included
both approaches, with the intention that the quadrature approach
could be applied as a fail-safe when the FHT is insufficient, and
also for independent testing of the digital filter accuracy (Anderson,
1989). Subsequent refinement of the FHT method has been carried
out to handle problem-specific EM integrals (e.g., Sorensen and
Christensen, 1994; Raiche, 1999) and new methods have been
found for obtaining optimal digital filter coefficients (e.g.,
Guptasarma and Singh, 1997; Kong, 2007).
The disparity between the FHT being ubiquitous in EM geophy-

sics while remaining largely absent in outside disciplines is intri-
guing. If the FHT is faster and acceptably accurate, why isn’t it
more prevalent in other disciplines that have similar Hankel trans-
form integrals? A corollary to this question is why haven’t the ISE
methods heavily used in other disciplines been more thoroughly
investigated for geophysical applications? These questions have
motivated the present work, which presents a new ISE algorithm
called quadrature-with-extrapolation (QWE). A simple Matlab im-
plementation of the QWE algorithm is provided as a companion
to this manuscript. This algorithm is compared with the FHT for
accuracy and speed on a suite of relevant modeling problems in-
cluding frequency-domain controlled-source EM, time-domain
EM and a large-loop magnetic source problem. As shortly revealed,
the results suggest that ISE methods deserve further consideration
in EM geophysics.

QUADRATURE INTEGRATION WITH SEQUENCE
EXTRAPOLATION

ISE methods partition the integral in equation 1 into an infinite
sum of partial integrals according to:

FðrÞ ¼
Z

∞

0
fðkÞgðkrÞdk ¼

X∞

i¼0

Fi; (8)

where

Fi ¼
Z

ki

ki−1
fðkÞgðkrÞdk: (9)

The interval breakpoints ki−1 < ki are usually the zeros or extrema
of the oscillatory function g, or some numerically convenient quan-
tity with similar spacing. Because the direct sum in equation 8
usually converges slowly, extrapolation techniques are used to ac-
celerate convergence. Weniger (1989) provides a thorough review
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of many nonlinear sequence transformation techniques that have
been proposed. Lucas and Stone (1995) and Michalski (1998) docu-
ment the rapid convergence of various ISE methods applied to the
Hankel transform integral of equation 2.
In the development of the present work, three transform methods

were considered. Levin’s t and u transformations were found to be
effective, yet the older and simpler Shanks transformation imple-
mented via the ϵ algorithm (Shanks, 1955; Wynn, 1956) was the
only method of these three that could handle the divergent integral
of the large-loop problem that is considered here. Furthermore, be-
cause the ϵ algorithm can be performed very efficiently, it was found
to offer shorter run-times than the other transforms. The remainder
of this work will therefore only consider the ϵ algorithm.
The ϵ algorithm is a recursive method defined by the three

relations:

ϵðnÞ0 ¼ Sn; n ≥ 0; (10)

ϵðn−1Þ1 ¼ 1

ϵðnÞ0 − ϵðn−1Þ0

; n ≥ 1; (11)

ϵðn−jÞj ¼ ϵðn−jþ1Þ
j−2 þ 1

ϵðn−jþ1Þ
j−1 − ϵðn−jÞj−1

; n ≥ 2; 2 ≤ j ≤ n;

(12)

where Sn is the direct partial sum

Sn ¼
Xn

i¼0

Fi: (13)

This algorithm is graphically represented in Figure 1. The elements
in the first column correspond to the direct sum of partial integrals,
whereas elements to the right are the results of the sequence trans-
formations. The nth order Shanks transformation is ϵð0Þn for even n
and ϵð1Þn−1 for odd n, as shown in Figure 1. If the partial sums Sn are
regarded as part of a power series, the nth order Shanks transforma-
tion corresponds to the diagonal Padé approximants (Weniger,
1989); hence, the sequence transformation using the ϵ algorithm
is equivalent to the continued fraction approach of Hänggi et al.
(1978), yet as Michalski (1998) notes, the ϵ algorithm is more eco-
nomical. We can therefore expect that ϵ algorithm will have the
same rapid convergence demonstrated by the continued fraction
approach of Chave (1983), yet will be more sparing in its computa-
tional run-time.
Lucas and Stone (1995) and Michalski (1998) examined the

choice of breakpoints ki, generally finding that the Bessel function
zeros or extrema, or their approximations provide good conver-
gence, with the best choice dependent on the specific problem.
The partial integrals in equation 9 are evaluated using a quadra-

ture rule of the form

Fi ≈
Xm

j¼1

wjfðxj∕rÞgðxjÞ; (14)

where m is the quadrature order and w are weights associated
with the quadrature abscissae x. Chave (1983) used the adaptive

Gauss-Kronrod quadrature method of Patterson (1968), in which
the quadrature order is increased (m ¼ 3; 7; 15; 31; : : : ) until a pre-
defined error criteria is satisfied. While this allows for a general
code that can automatically adapt to the character of arbitrary kernel
functions, there is a trade-off in the additional time required for the
adaptive iterations. As is demonstrated here, a low-order quadrature
rule is usually sufficient for many of the integrals encountered in
EM geophysics. Consequently, this work will use a fixed-order
Gauss quadrature method where the abscissae x are the roots of
the corresponding Legendre polynomial (e.g., Trefethen, 2000).
A simple rearrangement of equation 14 reveals that the quadra-

ture sum can be recast into a form remarkably similar to the FHT
method in equation 6:

Fi ≈
Xm

j¼1

fðxj∕rÞwjgðxjÞ ¼
Xm

j¼1

fðxj∕rÞĝðxjÞ; (15)

where ĝðxjÞ is independent of the specific argument r. Hence, the
product wjgðxjÞ can be precomputed and stored for later use with
any arbitrary kernel f, much like the precomputed filter weights h
used in the digital filter method. This analogy can also be extended
to the partial sum in equation 13. Defining the vector X as contain-
ing all the quadrature abscissae required for the n-th order sum:

Xn ¼ ½x1; x2; : : : ; xmn&T; (16)

the quadrature approximation to the sum in equation 13 can be writ-
ten as the product of two vectors:

Sn ¼ fðX∕rÞTĝðXnÞ: (17)

The term ĝðXnÞ is relatively expensive to compute because it re-
quires mn evaluations of the Bessel functions, but again this could
be precomputed to exceedingly large n and stored in a subroutine,
or it could be generated on the fly at the start of a program and then
reused for arbitrary kernels and arguments r. This is analogous to
the FHT in that the kernel function is evaluated at certain points and
then multiplied by a weighting vector. The key difference here is
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Figure 1. Illustration of the recursive ϵ algorithm. Black arrows re-
present the simple difference of equation 11, while gray arrows
show the four-term recurrence relation of equation 12. Gray boxes
show the nth order Shanks transformation (i.e., the best approxima-
tions) for odd and even orders n.
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that the kernel function is evaluated at the unevenly spaced Gauss
quadrature points rather than the logarithmically spaced abscissae
of the digital filter.
This method of fixed-point quadrature with extrapolation via the

Shanks transformation will be referred to as QWE. In the remainder
of this work, a Matlab implementation of the QWE method is used
to examine its speed and reliability for a suite of EM geophysics
problems. The QWE method begins by computing the weighting
vector ĝðXnÞ for a large n (typically n ¼ 100 is more than suffi-
cient). This entails generating the quadrature weights and abscissae
using the method described in Trefethen (2000) and the rapid
computation of the Bessel function zeros using a vectorized imple-
mentation of Newton’s method (e.g., Hamming, 1986). The integral
of the first breakpoint interval is then evaluated with quadrature,
yielding S0. The quadrature and extrapolation then proceeds
iteratively as follows. For each iteration i, the quadrature sum Fi
is computed with equation 15 and the direct sum is updated using
Si ¼ Si−1 þ Fi. The extrapolated sum is then found by performing
the ϵ algorithm for order n ¼ i using equations 10–12. The Matlab
implementation of these equations is patterned after the moving loz-
enge technique and Fortran subroutine given in Weniger (1989).
Defining S'n as the extrapolated result from the ϵ algorithm, the
absolute error δS'n is estimated by differencing subsequent iterations
of the transform using

δS'n ¼ jS'n − S'n−1j: (18)

The QWE iterations proceed until the solution satisfies an user spe-
cified relative tolerance α and absolute tolerance β according to the
inequality

δS'n ≤ αjS'njþ β: (19)

NUMERICAL TESTS

For comparison purposes, the FHTwas also implemented in Ma-
tlab. Digital filters of length 51, 101, and 201 points for the J0 and
J1 Bessel functions and sine and cosine filters of length 101 and 201
points were designed using the approaches described in Guptasarma
and Singh (1997) and Kong (2007). The FHT implementation fol-
lows the simple multiplication and sum given by equation 6.
Anderson (1979) discusses a method known as adaptive convolu-
tion, where the sum is modified to be initially evaluated only over
the center portion of the filter, and then followed out onto both tails
until the resulting terms fall below some tolerance level, potentially
reducing the number of costly kernel evaluations. Experience with
the short filter lengths considered here has shown there is no appre-
ciable time-savings from applying this adaptive method because
most of the filter is usually required to minimize errors in the solu-
tion. Conversely, the 801 point filter of Anderson (1989) has large
enough tails that some savings could be gained, depending on the
specific integral under consideration.
The QWE method will now be compared to the FHT method for

three different EM modeling problems. All of the Matlab codes and
filter coefficients used for the following tests are included as a com-
panion to this manuscript. These tests were performed with Matlab
R2010b running on a Macbook Pro laptop with a 2.8 GHz Intel
Core 2 Duo processor.

Controlled-source EM

During the past decade the controlled-source electromagnetic
(CSEM) method has been adopted for offshore hydrocarbon ex-
ploration (e.g., Constable, 2010), making the marine CSEM pro-
blem a relevant test for the Hankel transform algorithms. For an
inline horizontal electric dipole transmitter positioned in layer i
of an arbitrary stack of N-layers with top depths zi and conductivity
σi, the frequency-domain horizontal electric field in the quasi-static
approximation can be found with the transform:

EhðrÞ ¼
Z

∞

0

!
ÊJ0J0ðλrÞ þ ÊJ1

J1ðλrÞ
r

"
dλ; (20)

where the kernels are

ÊJ0ðλÞ ¼ −
1

2πμσi

!
γ2i Âh þ λ2

∂Λ̂z

∂z

"
λ; (21)

ÊJ1ðλÞ ¼
1

2πμσi

!
Âh þ

∂Λ̂z

∂z

"
λ2; (22)

γ2i ¼ λ2 − iωμσi, ω is the angular frequency and r is the horizontal
offset between the transmitter source and the receiver location.
When the source and receiver reside in the same layer i, the
horizontal and vertical potentials have the forms (Key, 2009):

Âh ¼ aieγiðz−ziþ1Þ þ bie−γiðz−ziÞ þ
μ
2γi

e−γijz−zsj; (23)

Λ̂z ¼ cieγiðz−ziþ1Þ þ die−γiðz−ziÞ

−
γi
λ2

ðaieγiðz−ziþ1Þ − bie−γiðz−ziÞÞ; (24)

where z is the measurement depth and zs is the source depth. The
coefficients ai and bi represent TE mode effects arising from con-
ductivity contrasts below and above the source layer, respectively.
Similarly, coefficients ci and di represent TM mode effects. The
multiplication by complex exponential terms accounts for decay
from the layer boundaries to the measurement depth z. These coef-
ficients vanish in a whole-space, leaving only the direct source term
on the right side of equation 23. Recursive formulas for computing
ai, bi, ci, and di in an arbitrary stack of layers are given in the
appendix of Key (2009).
In the parlance of Anderson (1982), ÊJ0 and ÊJ1 are called re-

lated kernels because they need to be evaluated concurrently and are
computed using the same potentials given by equations 23 and 24.
Similarly, the kernels for the other field components are also the
progeny of these potentials. Hence, it is convenient to compute
all of these transforms in parallel, which is done here for the
QWE method and the digital filter method.
The kernels ÊJ0 and ÊJ1 could each be transformed indepen-

dently by the ϵ algorithm. However, testing revealed that it is sig-
nificantly more efficient to apply the transform to the sum of these
terms. This is advantageous because the ϵ algorithm only needs to
be performed on a single quantity rather than two, resulting in a time
savings. Furthermore, it is sometimes the case that the integral of
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one kernel is much larger than the other. By summing the terms, the
lower magnitude term is numerically discounted during the se-
quence extrapolation such that the convergence is dictated only
by the larger quantity. The partial integral breakpoints were set
using the zeros of the J1 Bessel function, which were found to
be more efficient than the J0 zeros, although the difference is in-
significant compared to the differences observed between the
QWE and FHT methods.
Figure 2 shows the ÊJ0 and ÊJ1 kernels computed at 1 Hz for a

typical marine CSEMmodel known as the canonical reservoir mod-
el. This model consists of a resistive (10−12 S∕m) air layer overly-
ing a 1 km thick ocean of 3.3 S∕m and a 1 S∕m seafloor. A 100 m
thick resistive hydrocarbon reservoir of 0.01 S∕m is placed 1 km
beneath the seafloor. The transmitter is positioned 10 m above
the seabed. The kernels are fairly well behaved at small λ, but
rapidly decay to zero when λ ≫ 1.
The first test of the QWE method examines the convergence be-

havior using a relative tolerance of 10−12 and absolute tolerance of
10−30. An example of the very rapid convergence is shown in
Figure 3, where both kernel terms show a similar behavior, reaching
the requested relative tolerance after 20 QWE iterations. For this
example, the quadrature order was set to 51 to ensure a highly ac-
curate solution. The next example examines the accuracy of signif-
icantly lower quadrature orders that offer increased numerical
efficiency.
Figure 4 shows the accuracy of the responses computed for 21

seafloor receivers spaced from 0.5 to 20 km offset and for various
quadrature orders. The baseline “truth” was estimated using the
QWE method with 51-point quadrature and a relative tolerance
of 10−12. The relative error of the QWE approach rapidly decreases
with increasing quadrature order, with order five taken as sufficient
for most practical applications where 1% relative errors in real data
are typically considered good. For n ¼ 9 the relative error remains
less than 10−5, in excess of probably all practical needs. The relative
errors are greatest at short ranges (<5 km). If further accuracy is
desired, the order could be increased to 21 to drive the relative error
down to negligible levels.
By performing a few simple tests such as this, the QWE method

can be tailored to be accurate and fast for specific EM methods and

acquisition parameters. This is a significant benefit of ISE methods,
because they can be adapted to meet the requested error level.
Conversely, the digital filter method produces only a single result
and the end-user is not provided with any estimation of its accuracy.
Consider the 51-point digital filter response shown in the top of
Figure 4. The smooth character of this response at long ranges offers
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Figure 2. Horizontal electric field kernels from equations 21 and
22, computed for the canonical 1D model at 1 Hz. The real (solid)
and the imaginary (dashed) components are shown as a function of
the transform argument λ.
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nonical model using the QWE method with three-point quadrature
and the FHT method with 51-point filters compared with the true
CSEM response. Bottom: Relative error for the QWE method as a
function of the numerical quadrature order.

Fast Hankel transform or quadrature? F25



no clue to the underlying fact that it is severely inaccurate. It also is
fair to point out that a poor use of the QWE method will fail as well,
as demonstrated with the very low-order three point quadrature. In
both of these cases, an end-user is very likely to remain unaware
that the solution is highly inaccurate; consequently, this anomalous
large response might be interpreted as indicating a deep resistive
structure that in fact does not exist.
Figure 5 shows comparisons between the QWE method and the

FHT method using 51, 101, and 201 point filters. The relative error
of the FHT using the very short 51-point filters exceeds 0.01 (1%)
for most ranges, making it fairly worthless for most theoretical and
practical applications. The 101-point filter performs better, yet ex-
ceeds 0.01 relative error at offsets great than 15 km. The 201-point
filter performs the best, with errors below 10−6 for all ranges. The
relative tolerance for the QWE method was set to 10−6 so that the
results would be close to the accuracy of the 201-point filter. In
general, the FHT results exhibit the smallest errors at short ranges,
which then gradually increase at larger ranges. This is contrasted by

the QWE method, where the relative errors are largest at short
ranges where the low quadrature orders are insufficient to meet
the requested tolerance (yet in this example are sufficient for most
practical needs).
Figure 5 shows that the QWE and FHT methods are competitive

in terms of the number of kernel evaluations required. However, the
QWE method clearly requires fewer kernel evaluations to reach a
given accuracy. This is particularly evident for the nine-point QWE
compared to the 201-point digital filter. The bottom of Figure 5
shows the CPU time required as a function of offset. Again, the
QWE method performs favorably, particularly when compared to
the 201-point filter. Because both methods use the same code to
evaluate the kernel functions, the differences in run time reflect dif-
ferences in the number of kernel evaluations as well as the time
consumed by the typical 12–20 iterations of the ϵ algorithm re-
quired for the QWE method. Because the number of kernel evalua-
tions are very similar for the 101-point filter and the seven-point
QWE, the similar CPU times indicate that the ϵ algorithm is quite
efficient.

Time-domain EM

This next example considers the time-domain impulse response,
which can be obtained by Fourier transformation of the frequency
domain results given in the previous section. Haines and Jones
(1988) showed that the naive application of the fast Fourier trans-
form to EM geophysics problems can require several tens of thou-
sands of kernel evaluations to obtain an accurate response, and
instead developed an efficient logarithmically sampled Fourier
transform that only requires a few hundred kernel evaluations. How-
ever, it is common in the EM geophysics literature to invoke the
causality of the impulse response so that it can be solved using
either a cosine or sine transform

Ehðr; tÞ ¼
2

π

Z
∞

0
ReðEhðr;ωÞÞ cosðωtÞdω; (25)

¼ −
2

π

Z
∞

0
ImðEhðr;ωÞÞ sinðωtÞdω; (26)

which can be computed efficiently using the digital filter method
(e.g., Newman et al., 1986).
Figure 6 shows an example of the kernel Ehðr;ωÞ at r ¼ 3 km for

the canonical reservoir model. At low frequency, the kernel is well-
behaved, but at high frequencies, the kernel attenuates rapidly. The
real and imaginary components contain significant oscillations, in
contrast to relatively simple behavior of the wavenumber domain
kernels shown in the previous section. The imaginary component
has its first zero crossing at a higher frequency than the real com-
ponent, making it favorable for numerical evaluation, hence the fol-
lowing study will focus on integrating the sine transform in
equation 26. The QWE breakpoints are set to be the zeros of the
sine function.
Time-domain responses are often required at time offsets of 0.01

to 100 s. The QWEmethod needs a slight modification to handle the
earliest times. The first nonzero breakpoint corresponds to ω ¼ π∕t,
yet when t ≪ π the first quadrature interval will contain many ker-
nel oscillations and hence a high quadrature order is required. Con-
versely, when t ≫ π the first interval and subsequent intervals will
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Figure 5. Comparison of the fast Hankel transform and the QWE
method for marine CSEM computations. The top panel shows the
relative error as a function of offset for 51, 101, and 201-point di-
gital filters and for the QWE approach using five, seven, and nine-
point quadrature. The middle panel shows the number of kernel
evaluations required by each and the bottom panel shows the cor-
responding run-times required for each offset.
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only contain a small section of the kernel function and therefore can
be accommodated with a low quadrature order. As simple solution
to this complexity, the Matlab code for this problem inspects the
kernel function to see if Ehðr;ωÞ decays by more than a factor
of 100 in a given interval. If so, then Matlab’s built-in adaptive
Gauss-Kronrod quadrature routine quadgkðÞ is called instead of
the fixed-point rule. For the digital filter and QWE implementations
of the sine transform, the kernel Ehðr;ωÞ is first obtained over a
wide frequency range using the methods of the previous section,
and then is interpolated using a piecewise cubic spline during
the time-domain transform. A sampling density of 20 frequencies
per decade was found to be sufficient for the model study gi-
ven below.
Figure 7 shows a comparison of the QWE and digital filter meth-

ods for computing time-domain responses of the canonical model at
41 time steps spaced logarithmically in the range 0.01–100 s. Both
methods perform well at late time offsets, but the 101-point filter
responses break down the worst at early times while the QWEmeth-
od and the 201-point filters produced accurate responses to lower
amplitudes before hitting the early time numerical noise floor.
However, the QWE approach obtains this accuracy in about half
the run-time required by the 201-point digital filter.

Large-loop source

The two previous examples had kernel functions that decay ra-
pidly at large arguments. This section considers a more difficult ker-
nel that arises when using a large wire loop to generate a magnetic
field. The transform for obtaining the vertical magnetic field in the
plane of a horizontal loop at height h above a boundary is (e.g.,
Ward and Hohmann, 1987):

HzðrÞ ¼
rt
2

Z
þ∞

0

#
ðRTEe−2γ1h þ 1Þ λ

2

γ1
J1ðλrtÞ

$
J0ðλrÞdλ;

(27)

where rt is the radius of the transmitter loop and r is the measure-
ment range from the center of the transmitter loop. The term RTE is
the TE mode reflection coefficient, which for a two layer medium is

RTE ¼ γ1μ2 − γ2μ1
γ1μ2 þ γ2μ1

; (28)

where μ1 and μ2 are the relative magnetic permeabilities of each
layer and the γ coefficient was defined earlier.
This transform is more complex because it contains the product

of two Bessel functions and has a divergent term. Whereas the
RTEe−2γ1h term ultimately decays at large λ, the constant one multi-
plied by λ2∕γ1 continues to increase with λ. Figure 8 shows an ex-
ample of the real and imaginary parts of this kernel (without the
Bessel functions), and the highly oscillatory Bessel functions.
The divergent real kernel is proportional to λ2 at small arguments
and proportional to λ at large arguments (due to the relative impor-
tance of the frequency and conductivity terms in γ1). Conversely,
the imaginary kernel peaks at around λ ¼ 0.01 m−1 and decays
slowly in both directions.
For the QWE method, testing showed that using breakpoints

based solely on the zeros of J1ðλrtÞ is far more robust than using
either J0ðλrÞ or the zeros of their product. For the FHT method, the
kernel function is now ambiguous. For example, the quantity in
brackets could be considered the kernel and the J0 filter used, or
the J0 and J1 terms could be interchanged and the J1 filter used.
Empirical testing showed the best (though, as soon revealed, insuf-
ficient) results were from using the J1 filter when inside the loop at
r < rt and the J0 filter when r ≥ rt. For this problem, the QWE
method used a relative error tolerance of 10−6.
The results of the QWE and FHT methods are shown in Figure 9.

Both methods performed well for the imaginary component, which
can be explained by the imaginary kernel’s well-behaved decay at
large arguments. However, the FHT fails for the real component,
giving a very inaccurate and obviously incorrect response. Conver-
sely, the QWE method adequately handles this divergent kernel,
capturing the singular response behavior near the transmitter radius
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Figure 6. The time-domain kernel function Eðω; rÞ at r ¼ 3 km
range. The thick line shows the complex amplitude while the thin
solid and dashed lines show the amplitude of the real and imaginary
components.
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at r ¼ 5 m. Furthermore, for most of the ranges considered, the
QWE method required fewer kernel evaluations than the FHT.
While this problem serves as an example of the QWE method

outperforming the FHT, it should be noted that when the measure-
ment depth is sufficiently far from the plane of the source loop,
the integral can become more tractable for the FHT because
the constant one term in equation 27 is replaced by a decaying ex-
ponential term of the form e−γ1d, where d is the vertical distance
between the source loop and the measurement location.

Lagged-convolutions and spline approximations

This section examines how the QWE method compares to the
lagged convolution variant of the FHT (Anderson, 1982). The
lagged convolution enables the rapid solution at many offsets from
a single source by leveraging the exponential spacing of the kernel
evaluations, as briefly reviewed here. The digital filter used for the
FHT requires the kernel to be evaluated at n discrete λ according to

λk ¼ eak∕r0; k ¼ −l;−lþ 1; : : : ; l; (29)

where l ¼ ðn − 1Þ∕2, a is the filter spacing coefficient and r0 is a
particular offset. The nearby offset r1 ¼ r0ea can be computed with
only a single additional kernel evaluation, as shown by:

λk ¼ eak∕r1;¼ eaðkþ1Þ∕r0; k ¼ −l;−lþ 1; : : : ; l:
(30)

This can be extended to a sequence of N offsets at the logarithmic
spacing of the filter abscissae, all of which can be rapidly computed
at the high accuracy of the digital filter using only nþ N − 1 kernel
evaluations, rather than the nN operations required if computed in-
dependently. The exponential spacing of the filter abscissae results
in only a few additional kernel evaluations typically being required
to cover a large range of offsets; hence, the lagged convolution
scales very favorably with the number of offsets. Because in

practice one usually needs the responses at arbitrary offsets, the
lagged convolutions are first computed at the optimally spaced di-
gital filter points that bound the arbitrary offsets and then these are
interpolated to the specific offsets using cubic splines. The lagged
convolution has great potential for very efficient computations, yet
it should be noted that it can only be performed when all offsets
have the same measurement depth and the same source position
and orientation (i.e., they are computed from the same kernel
function parameters).
The QWE method can also be sped up through spline interpola-

tion. The kernel can be computed over a range of λ and then inter-
polated to obtain the particular λ required for the quadrature
operations. However, because the quadrature and extrapolation
operations are still required for each particular offset, the scaling
with the number of offsets will be poorer than for the lagged
convolution.
Figure 10 shows a comparison of the QWE and FHT methods

applied to the canonical model, along with the lagged convolution
method and splined-QWE method. The FHT tests used the 201-
point filters derived here as well as the 801-point filters from
Anderson (1989). For this particular modeling problem, the 201-
point filters are significantly more accurate than Anderson’s 801-
point filters. Due to the error introduced by the spline interpolation,
the lagged-convolutions are significantly less accurate than the di-
rect FHTapproach. However, where the ranges are close to the loga-
rithmically spaced filter points, the accuracy of the lagged
convolution decreases toward the normal digital filter accuracy.
For both the 201- and 801-point filters, the relative error in the
lagged convolution at long offsets exceeds 1%, while at shorter
ranges the relative error is much lower.
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For comparison purposes, the splined-QWE method was com-
puted with a relative tolerance of 10−2 and a λ density of 40 points
per decade for the spline interpolation. The splined-QWE stays be-
low the requested error level over the entire range. This illustrates an
advantage of the QWE approach, where the error level can be con-
trolled by adjusting the λ density used for the spline interpolation
and the relative error tolerance used for the QWE iterations. Con-
versely, the spline knot density of the lagged convolution is fixed by
the digital filter spacing and therefore cannot be adjusted (unless
starting over using another filter, if available).
Now, consider the speed of each approach. Table 1 shows the run-

times obtained by each method as a function of the number of offsets.
The basic QWE method used a relative tolerance of 10−6 while the
splined QWE method used 10−2. This was done so that the basic
QWE method had errors comparable to the normal FHT, while the
splined-QWE method gave errors similar to the lagged convolutions
(as shown in Figure 10). Except for the case of only a single offset, the
splined-QWE is always faster than the basic QWE method, with the
speed-up factor increasing with the number of offsets. However, when
more than a few offset are considered, the lagged convolution using

the 201-point filter is much faster than the splined-QWE. For the 21
offset example, the lagged convolution using the 201-point filter is 16
times faster than the normal FHTand almost a factor of two faster than
the splined-QWE. The efficiency of the lagged convolution is more
dramatic when 321 offsets are considered, with the run-time increas-
ing by less than a factor of two despite the number of offsets increas-
ing by a factor of 15. For this case, the lagged convolution with the
201-point filter is about four times faster than the splined-QWEmeth-
od. Table 1 shows additional computations for when the number of
model layers was increased to 100, which requires significantly more
effort for evaluating the kernel functions. Again, the lagged convolu-
tion is much faster than the QWE method.

CONCLUSIONS

While the FHT has been the method of choice for the past few
decades due to its speed and accuracy, the QWE method presented
here is a useful alternative. A significant benefit of the QWEmethod
is the error control available through the adjustable quadrature order
and the extrapolation tolerances. This can be used to easily tune the
QWE method to give accurate responses for particular model pro-
blems and data parameters. Conversely, a given digital filter used
for the FHT method provides only a single answer with an unknown
accuracy that can vary greatly depending on the specific model and
data parameters being considered, although in many cases the FHT
digital filters are accurate enough for most practical needs.
For the three EM integral transforms considered here, the QWE

method was consistently as fast as or faster than the normal digital
filter method used for the FHT. This represents an advancement
over a previously proposed quadrature method that uses a contin-
ued-fraction expansion and was shown to be significantly slower
than the FHT. However, when the integrals are evaluated at a large
number of offsets, the lagged convolution variant of the FHT sig-
nificantly outperforms the QWE method, even when the QWE is
accelerated using spline interpolation.
These results suggest the following: When highly accurate solu-

tions are required and speed is not the main concern, the QWE
method is the clear choice because the quadrature order and the ex-
trapolation tolerances can be increased until the desired solution
accuracy is obtained. The choice is less clear when computational
speed is paramount. For a single offset, the QWE method will
generally will be faster than the FHT, at least for the types of
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Table 1. Comparison of the run times for the normal and lagged convolution FHT methods with the normal and splined QWE
methods. Bold numbers show the fastest time for a given number of layers and offsets.

QWE FHT: 201-pt filter FHT: 801-pt filter

# Layers # Offsets Normal Splined Normal Lagged Normal Lagged

5 1 0.03 0.06 0.04 0.04 0.15 0.15
5 5 0.14 0.06 0.19 0.05 0.75 0.06
5 21 0.62 0.08 0.80 0.05 3.20 0.17
5 81 2.39 0.15 3.06 0.06 12.15 0.18
5 321 9.45 0.36 12.14 0.09 48.55 0.21
100 21 0.95 0.11 1.24 0.08 4.88 0.26
100 81 3.67 0.18 4.80 0.08 18.76 0.27
100 321 14.49 0.38 19.29 0.11 74.27 0.30
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problems considered here. When a large number of offsets are re-
quired and they are all at the same depth and for the same source
position and orientation, the lagged convolution variant of the FHT
is probably the best choice, with the caveat that the solution will
have a degraded accuracy due to the spline interpolation. Even this
decreased accuracy is likely to be sufficient for most practical ap-
plications; however, it should be verified independently (for exam-
ple, by the QWEmethod) when encountering a new problem or new
range of model parameters. For divergent integrals such as those
encountered in the large-loop problem, the QWE method can pro-
vide an accurate answer when the FHT method fails.
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